sábado, 8 de junio de 2013

Origen de la aritmética


Los orígenes de la aritmética se pueden rastrear hasta los comienzos de la matemática misma, y de la ciencia en general. Los registros más antiguos datan de la Edad de Piedra: huesos, palos, piedras talladas y escarbadas con muescas, presumiblemente con fines de conteo, de representación numérica y calendarios.

Edad antigua

Hay evidencias de que los babilonios tenían sólidos conocimientos de casi todos los aspectos de la aritmética elemental hacia 1800 a. C., gracias a transcripciones de caracteres cuneiformes sobre tablillas de barro cocido, referidas a problemas de geometría y astronomía. Solo se puede especular sobre los métodos utilizados para generar los resultados aritméticos - tal y como se muestra, por ejemplo, en la tablilla de arcilla Plimpton 322, que parece ser una lista de ternas pitagóricas, pero sin mostrar cómo se generó la lista.
Los antiguos textos Shulba-sutras (datados ca. 800 a.C y 200 a.C) recopilan los conocimientos matemáticos de la India durante el período védico; constan de datos geométricos relacionados con la construcción de altares de fuego, e incluyen el problema de la cuadratura del círculo.
Otras civilizaciones mesopotámicas, como sirios y fenicios, alcanzaron grados de desarrollo matemático similar que utilizaron tanto para el comercio como para la resolución de ecuaciones algebraicas.
El sistema de numeración egipcio, basado en fracciones unitarias, permitía efectuar cuentas aritméticas avanzadas, como se muestra en papiros conservados como el Papiro de Moscú o el Papiro de Ahmes (que data de ca. 1650 a. C., aunque es una copia de un antiguo texto de ca. 1850 a. C.) que muestra sumas, restas, multiplicaciones y divisiones, utilizando un sistema de fracciones, así como los problemas de determinar el volumen de una esfera, o el volumen de una pírámide truncada. El papiro de Ahmes es el primer texto egipcio que menciona los 365 días del calendario egipcio, es el primer calendario solar conocido.

Aritmética formal en la Antigua Grecia 

La aritmética en la Grecia Antigua era considerada como el estudio de las propiedades de los números, y no incluía cálculos prácticos, los métodos operatorios eran considerados una ciencia aparte. Esta particularidad fue heredada a los europeos durante la Edad Media, y no fue hasta el Renacimiento que la teoría de números y los métodos de cálculo comenzaron a considerarse «aritméticos».
La matemática griega hace una aguda diferencia entre el concepto de número y el de magnitud o conmensurabilidad. Para los antiguos griegos, número significaba lo que hoy se conoce por número natural, además de diferenciar entre «número» y «magnitud geométrica». Los libros 7–9 de Los elementos de Euclides tratan de la aritmética exclusivamente en este sentido.
Nicómaco de Gerasa (ca. 60 - 120 d. C.), en su Introducción a la Aritmética, resume la filosofía de Pitágoras y de Platón enfocada a los números y sus relaciones fundamentales. Nicómaco hace por primera vez la diferencia explícita entre MúsicaAstronomíaGeometría y Aritmética, y le da a esta última un sentido más «moderno», es decir, referido a los números enteros y sus propiedades fundamentales. El quadrivium (lat. "cuatro caminos"), agrupaba estas cuatro disciplinas científicas relacionadas con la matemática proveniente de la escuela pitagórica.
Diofanto de Alejandría (siglo III d.C), es el autor de Arithmetica, una serie de libros sobre ecuaciones algebraicas en donde por primera vez se reconoce a las fracciones como números, y se utilizan símbolos y variables como parte de la notación matemática; redescubierto por Pierre de Fermat en el siglo XVII, las hoy llamadas ecuaciones diofánticas condujeron a un gran avance en la teoría de números.

Edad Media y Renacimiento europeo 

El mayor progreso matemático de los griegos se dio entre los años 300 a.C y el 200 d.C. Después de esto los avances continuaron en regiones islámicas. La matemática floreció en particular en Irán, Siria e India. Si bien los descubrimientos no fueron tan sustanciales como los llevados a cabo por la ciencia griega, sí contribuyeron en gran medida a preservar sus obras originales. A partir del siglo XI, Adelardo de Bath y más adelante Fibonacci, introducen nuevamente en Europa esta matemática islámica y sus traducciones del griego.

De las siete artes liberales en que se organizaban los estudios formales en la Antigüedad y la Edad Media, la aritmética era parte de las enseñanzas escolásticas y universitarias. En 1202, Fibonacci, en su tratado Liber Abaci, introduce el sistema de numeración decimal con números arábigos. Las operaciones aritméticas, aún las más básicas, realizadas hasta entonces con numerales romanos resultaban muy complicadas; la importancia práctica en contabilidad hizo que las nuevas técnicas aritméticas se popularizaran enseguida en Europa. Fibonacci llegó a escribir que «comparado con este nuevo método, todos los demás habían sido erróneos».

Civilizaciones precolombinas 

Los incas se destacaron principalmente por su capacidad de cálculo para fines económicos y comerciales. Los quipus y yupanas fueron señal de la importancia que tuvo la administración incaica. Esto dotó a los incas de una aritmética sencilla pero efectiva para fines contables; basada en un sistema decimal, conocieron el cero y dominaron la suma, la resta, la multiplicación y la división.

Letras matemáticas



Número π


π (pi) es la relación entre la longitud de una circunferencia y su diámetro, en geometría euclidiana. Es un número irracional y una de las constantes matemáticas más importantes. Se emplea frecuentemente en matemáticas, física e ingeniería. El valor numérico de π, truncado a sus primeras cifras, es el siguiente:

3.1415926535897932384626433832795028841971693...

El valor de π se ha obtenido con diversas aproximaciones a lo largo de la historia, siendo una de las constantes matemáticas que más aparece en las ecuaciones de la física, junto con el número e. Por ello, tal vez sea la constante que más pasiones desata entre los matemáticos profesionales y aficionados. La relación entre la circunferencia y su diámetro no es constante en geometrías no euclídeas.

Epsilon ε

La Epsilon es un concepto matemático que significa lo mas pequeño que uno pueda imaginar, es algo así como el inverso de infinito, como todo estudiante sabe, el concepto de infinito es la cantidad mas grande que pueda imaginar, pero con la plena certeza de que hay un numero mas grande que ese, en este caso, es lo mas pequeño que se pueda uno imaginar, pero sabiendo que existe un numero aun menor.

Es muy util cuando se usa para medir distancias, porque en ese caso uno puede decir que se puede aproximar tanto como uno desee a algo, usualmente al cero:

Cuando estamos en el Calculo, usualmente deseamos encontrar epsilones, la razón, simple, como distancias podemos acotar diferencias con ellas, y cuando una diferencia de dos cosas se hace tan pequeña como queramos, entonces podemos afirmar que ambas cosas son una misma, o bien, si decimos que podemos acercar una función tanto como queramos a un punto dado, podemos afirmar que esta tiende a un limite dado, o a que una derivada cumple las condiciones estrictas para ser derivada. O bien en sucesiones, cuando definimos la Convergencia de Cauchy, la hacemos por medio de una Epsilon, diciendo que si hay un termino de la sucesión, a partir del cual, las distancias entre cualesquiera dos términos subsecuentes son tan pequeñas como nosotros queramos, entonces la sucesión converge, es importantísimo encontrar la Epsilon para demostrar que la sucesión converge.